

No 2006 – 03 February

Structural Determinants of the Exchange-Rate Pass-Through

Guillaume Gaulier Amina Lahrèche-Révil Isabelle Méjean

Structural Determinants of the Exchange-Rate Pass-Through

Guillaume Gaulier Amina Lahrèche-Révil Isabelle Méjean

> No 2006 – 03 February

Contents

1	Introduction	8
2	Theoretical determinants of pass-through behaviors	9
	2.1 Theoretical framework	9
	2.2 Other sources of incomplete pass-through	11
3	Data and empirical strategy	12
	3.1 From the theoretical model to the estimated equations	12
	3.2 The data	13
4	Pricing-to-market for the whole sample	14
5	Determinants of pass-through behaviors	16
	5.1 Organized versus differentiated products markets	16
	5.2 Bilateral Market structures	19
6	Conclusion	22

STRUCTURAL DETERMINANTS OF THE EXCHANGE-RATE PASS-THROUGH¹

SUMMARY

Incomplete exchange-rate pass-through is a typical micro-based phenomenon that bears important macro-economic consequences. A number of recent papers have tried to justify incomplete pass-through within open macro-economics models. The weak sensitivity of import prices to exchange-rate movements is explained by the behavior of exporting firms, which adopt pricing-to-market strategies. Indeed, in an imperfectly competitive environment, exporting firms may find it optimal to smooth the impact that exchange-rate movements have on local currency prices, by adjusting their mark-ups. The share of currency changes that is absorbed by exporters will then depend on various parameters, such as the perceived elasticity of demand, the firm's market power in the destination market, etc.

Such microeconomic explanations of the incomplete pass-through however lack of an empirical support. Indeed, pass-through estimates are generally run on aggregate data and cannot be used to validate theoretical micro-funded models. On the other hand, available estimates at the sectoral level are limited either in terms of industry coverage or in terms of disaggregation level.

In this paper, we use the BACI database, developed at CEPII, to investigate incomplete passthrough at the product level. Because BACI displays a highly disaggregated nomenclature (the hs6 level), we are able to estimate the sensitivity of export prices to exchange-rate movements for more than 4,000 products. Another advantage of this database lies in its country coverage (more than 130 countries). Indeed, when pooling these bilateral data in the hs6 dimension, all pass-through determinants linked to the geographical dimension of the phenomenon are smoothed and we obtain product-specific coefficients, reflecting the mean behavior of all exporters around the world. Last, the bilateral dimension of these data allows us to use panel techniques with fixed effects controlling for a large array of price determinants that would be otherwise difficult to measure with accuracy at this disaggregation level. As expected from micro-funded models, results display a strong heterogeneity across products. About half of the 4,000 estimated coefficients are suggestive of pricing-to-market behaviors whereas the other ones are not significantly different from zero. Moreover, even among these significant PTM coefficients, the size of the suggested pass-through strongly varies.

The classifications of sectors developed by Rauch (1999) and the UNIDO (BEC) allow to identify the specific features of pass-through behaviors, according to the nature of goods and the market structures. Pricing to market behaviors are shown to be stronger when the goods are traded on referenced markets, probably because referencing eases arbitrage behaviors, and forces firms to keep their prices in line with the prices on the import market. Pricing to market is also stronger for final consumption goods, probably because of a higher competitive pressures on those markets.

Last, the influence of several exporter- or importer-specific features is investigated: on average, pricing-to-market is lower in small or concentrated markets (where the risk of demand is less pronounced), and when the exporter already owns a strong market share (i.e. a strong market power).

¹The authors are thankful to Agnès Bénassy-Quéré and Jean-Olivier Hairault for carefully commenting on previous versions of this paper.

ABSTRACT

Recent papers have tried to explain incomplete pass-through observed at the aggregate level by various microeconomic behaviors. This paper assesses some of these explanations, using product-level estimates of pricing-to-market coefficients obtained from a new database of bilateral international trade that covers more than 5,000 products and 130 countries. Half of the industries are found to exhibit pricing-to-market, but the magnitude of the pass-through is shown to vary widely across sectors, even at the most detailed level. Pricing-to-market is then shown to be higher in markets where arbitrage is made easier by the existence of referenced prices, and for final consumption goods. Moreover, competitive pressures faced by exporting firms are shown to affect pass-through decisions as well: firms tend to price to market all the less that their market share in the destination market is large, and that the destination markets are small or concentrated.

JEL classification: F1, F4

Keywords: pass-through determinants, product-level analysis, panel data, oligopolistic competition.

LES DÉTERMINANTS STRUCTURELS DE LA RÉACTION DES PRIX AUX VARIATIONS DE CHANGE

Résumé

La transmission incomplète des variations de change aux prix à l'importation est un phénomène aux conséquences macro-économiques bien connues, résultant de comportements microéconomiques de fixation des prix en concurrence imparfaite. Récemment, plusieurs modèles de la Nouvelle Macro-économie Ouverte ont tenté de modéliser ce phénomène sur la base de comportements individuels de tarification au marché. Dans un cadre de concurrence imparfaite, on peut montrer que les firmes exportatrices peuvent avoir intérêt à lisser l'impact des mouvements de change sur les prix en monnaie locale par des ajustements de leur taux de marge. La part des variations de change absorbée par les exportateurs dépendra alors de différents paramètres structurels comme l'élasticité perçue de la demande, le pouvoir de marché de la firme sur le marché destinataire, etc.

De telles explications micro-fondées du phénomène de *pass-through* incomplet souffrent cependant d'un manque d'évidences empiriques permettant de valider ces intuitions. En effet, les estimations de coefficients de *pass-through* utilisent généralement des données agrégées qui ne permettent pas de tester les déterminants structurels mis en avant par les modèles. De plus, les quelques estimations sectorielles existantes ont une portée limitée, soit car le niveau d'agrégation des données de commerce est encore élevé, soit parce que leur couverture sectorielle est trop limitée pour que les résultats soient généralisables.

Dans cet article, nous utilisons la base de données BACI développée par le CEPII pour étudier le phénomène de *pass-through* incomplet au niveau du produit. La fort désagrégation de la base (nomenclature *sh*6) permet d'estimer la sensibilité au change des prix à l'exportation de plus de 4000 produits. La couverture géographique de la base (plus de 130 pays) permet en outre de minimiser le biais potentiel lié à la dimension géographique de ce phénomène. En effet, en empilant les données bilatérales dans la dimension *sh*6, on obtient des coefficients spécifiques à chaque produit, reflétant l'attitude moyenne des exportateurs de tout pays, quelle que soit la destination du bien. Enfin, la dimension bilatérale des données permet d'utiliser des techniques de panel avec des effets fixes contrôlant pour de nombreux déterminants non observables des prix.

Comme le suggèrent les modèles micro-fondés, on observe une forte hétérogénéité des résultats par produit. Environ la moitié des 4000 coefficients ainsi estimés mettent en évidence des comportements de tarification au marché, tandis que les autres coefficients ne sont pas significativement différents de zéro. De plus, même parmi les produits pour lesquels on identifie un phénomène de tarification au marché, l'ampleur des ajustements présente de fortes disparités.

A partir de là, l'influence de plusieurs déterminants théoriques des stratégies de tarification au marché est testée en utilisant différents indicateurs décrivant les structures de marché de chaque produit.

Les classifications de Rauch (1999) et de la CNUCED (BEC) permettent d'identifier des spécificités de comportements de *pass-through* selon la nature des biens échangés, et la structure générale des marchés sur lesquels ils sont échangés. Il apparaît que les comportements de tarification au marché sont plus prononcés lorsque les biens sont échangés sur un marché référencé, sans doute car le référencement des produits facilite les comportements d'arbitrage, obligeant les firmes à s'aligner sur le prix du marché importateur. Les comportements de tarification au marché sont également plus marqués pour les biens de consommation finale, probablement du fait d'une plus forte concurrence sur ces marchés. On mesure enfin l'influence de caractéristiques spécifiques à chaque exportateur et/ou impor-

tateur: en moyenne, l'absorption des fluctuations de change dans les marges semble moins marquée dans des petits pays ou sur des marchés concentrés, le risque de demande étant alors limité, et lorsque l'exportateur a une part de marché (i.e. un pouvoir de monopole) suffisante.

Résumé court

La littérature récente a tenté d'expliquer de manière micro-fondée un phénomène observé au niveau agrégé, la réaction incomplète des prix à l'importation aux variations de change. Dans cet article, nous testons la pertinence de quelques unes de ces explications, en utilisant des données bilatérales fines de commerce international, couvrant plus de 5000 produits et 130 pays. Les coefficients estimés mesurent les comportements de tarification au marché des firmes, confrontées à un risque de change. Nous montrons que la moitié des firmes adoptent de telles stratégies de prix. Cependant, l'ampleur de la transmission des variations de change aux prix à l'importation varie d'un secteur à l'autre, même au niveau le plus fin. En effet, l'absorption des mouvements de change dans les marges des firmes est plus importante sur des marchés où les comportements d'arbitrage sont facilités par l'existence de prix référencés ainsi que sur des marchés de consommation finale. En outre, l'intensité de la pression concurrentielle entre firmes exportatrices affecte les stratégies de prix : l'absorption des mouvements de change par les firmes est d'autant plus faible que leur part de marché est élevée. De même, les prix dans les marchés de petite taille ou très concentrés sont en moyenne plus sensibles aux variations de change.

Classification JEL: F1, F4

Mots clés: déterminants du pass-through, analyse désagrégée, données de panel, concurrence oligopolistique.

STRUCTURAL DETERMINANTS OF THE EXCHANGE-RATE PASS-THROUGH

Guillaume GAULIER² Amina LAHRECHE-REVIL³ Isabelle MEJEAN⁴

1 Introduction

Interest in open macroeconomics has recently focused on incomplete pass-through, as studied in a new generation of "pricing-to-market" models. Indeed, the weak sensitivity of import prices to exchange rate movements has been shown to bear important macro-economic consequences for the international transmission of real shocks and currency changes.⁵ Several New Open Macroeconomics models have tried to go beyond the issue of the consequences of this phenomenon to investigate its micro-foundations. These models explain the incomplete pass-through in terms of pricing-to-market⁶, rationalized in specific models by certain forms of demand or technological functions. For instance, Bachetta & Van Wincoop (2005) highlight the role of the competitive structure in explaining exporters' decisions to absorb or pass currency changes into their prices: the higher the firm's market share in the destination country, the lower its incentive to absorb nominal shocks. Corsetti & Dedola (2002) study pass-through strategies in a model with distribution costs and show that these decisions are influenced by the price of local inputs. As shown by Aizenman (2004), the availability of financial instruments can affect individual pricing-to-market strategies under uncertainty with regards to the future level of transportation costs. Last, Bergin & Feenstra (1998) build a model of optimal incomplete pass-through explained by price strategies of firms facing a non-constant demand elasticity.

From an empirical point-of-view however, the relevance of the micro-funded explanations of the incomplete pass-through is difficult to assert as a large majority of pass-through estimates are obtained from aggregate prices.⁷ These papers highlight the strong cross-country heterogeneity in the size of the exchange rate pass-through, that may however reflect either country-specific features or composition effects. As for the industry-level estimates, they are limited either in their disaggregation level⁸, thus preventing any formal structural explanation, or in their coverage⁹ so that results cannot easily be generalized.

²CEPII (guillaume.gaulier@cepii.fr).

³CEPII (amina.lahreche@cepii.fr).

⁴CEPII, CREST-LMA and EUREQUA (isabelle.mejean@cepii.fr).

⁵See Betts & Devereux (1996), Devereux & Engel (2003)

⁶The notion of pricing-to-market, as defined by Krugman (1987), refers to a form of price discrimination in which exporting firms adjust their mark-ups to currency changes in order to maintain their prices in local currency.

⁷See e.g. Campa & Goldberg (2004), Anderton (2003), Warmedinger (2004).

⁸For instance, Campa & Minguez (2004) work on 13 1-digit sectors, Campa & Goldberg (2004) on 5 product categories, Pollard & Coughlin (2003) on 20 3-digit manufacturing industries, and Yang (1997) on 64 3- or 4-digit sectors.

⁹Several authors, as Gagnon & Knetter (1995), Gross & Schmitt (2000) and Gil-Pareja (2003) limit their analysis to the car industry. Knetter (1993) studies a maximum of 60 7–digit industries, Gil-Pareja (2002) 26 8–digit industries, Takagi & Yoshida (2001) 20 9–digit sectors.

The aim of this paper is to investigate the structural dimension of incomplete pass-through. Pricing-to-market elasticities¹⁰ are estimated at the product-level using highly disaggregated data, which are pooled across more than 130 countries. Comparing PTM coefficients across products allows to identify pricing-to-market strategies in half of the industries, with a strong heterogeneity across products with regard to the share of exchange-rate fluctuations that is absorbed by exporters. This heterogeneity is then explained either by the nature of traded goods or by the market structures in which goods are traded. Indeed, pricing-to-market tends to be all the more pronounced in markets where arbitrage is made easier by the presence of "reference prices", and for final consumption goods. Moreover, destination-specific market structures are shown to affect pass-through strategies: exporters tend to smooth exchangerate movements all the more that their partners are large, whereas they are more able to pass exchange-rate changes in concentrated markets and where their market share is large enough. The remaining of the paper is as follows. Section 2 sets out the theoretical framework used to investigate exchange-rate pass-through, as well as some existing results concerning potential determinants of PTM decisions. The database and empirical strategy are presented in Section 3. Section 4 describes the general results and investigates the sector-specific features that are likely to explain the strong heterogeneity among product-level estimates. Section 5 concludes.

2 Theoretical determinants of pass-through behaviors

The observed low sensitivity of local currency import prices to exchange-rate changes has lead economists to consider the possibility that exporters may adjust their price to these fluctuations in order to maintain their competitiveness in the destination market. Such a behavior, labeled Pricing-to-Market by Krugman (1987), is obviously impossible in a perfect competitive framework since it requires that export prices are initially set above the marginal production cost. However, whenever the exporter's margin is strictly positive, pricing-to-market can become a sustainable strategy from the exporter's point-of-view, in what case the measured pass-through of currency changes into import prices will be less than one. The size of the exchange-rate pass-through will therefore depend on micro-based features, and above all on the ability of exporters to absorb exchange-rate shocks within their profit margins. This is usually formally shown within monopolistic competition frameworks (see e.g. Knetter, 1989). While this allows for an easy derivation of the optimal pricing-to-market coefficient, such a framework is nevertheless consistent with only limited pricing strategies, whereas other microeconomic features are likely to influence pass-through in export markets.

2.1 Theoretical framework

Assume country i produces good k within a monopolistic framework. The good is sold to different segmented markets j, where producers are therefore able to differentiate export prices according to the destination. At time t, the optimal destination-specific export price, in the producer's currency, can be written as:

$$P_t^{ijk} = M C_t^{ik} \mu_t^{ijk} \tag{1}$$

¹⁰In the following, we call pricing-to-market elasticity (PTM elasticity hereafter) the reaction of export prices (in the exporter's currency) to a one percent change in the exchange rate. Under complete pass-through, export prices should be insensitive to currency changes (zero pricing-to-market). The low sensitivity of import prices to currency changes is thus interpreted in terms of pricing-to-market strategies, i.e. a price adjustment consented by firms to stabilize prices in the destination market.

with:

- MC_t^{ik} the marginal production cost, which is assumed to be identical across destinations at each period (i.e. $MC_t^{ijk} = MC_t^{ik}, \forall j$)
- μ_t^{ijk} the producer's mark-up, which depends on the elasticity of demand to the price in local currency: $\mu_t^{ijk} = \frac{\eta_t^{ijk}}{\eta_t^{ijk}-1}$ where η_t^{ijk} is the inverse of the price-elasticity of demand.

In the following, η_t^{ijk} is written as a function of the price in the destination country's currency $(P_t^{ijk}/S_t^{ij}$ with S_t^{ij} the bilateral exchange rate in *i*'s currency per unit of *j*'s, which increases when *i*'s currency depreciates), and possibly on demand-specific variables (summarized by the vector Z_t^{jk}), identified by a trend in the estimated equation.

First-differentiating optimal prices (1) with respect to the different variables yields the following expression of the exporter's price, for sales in country j:¹¹

$$p_t^{ijk} = (1 - \beta^{ijk})mc_t^{ik} + (1 - \beta^{ijk})\frac{\eta^{ijk}}{\eta^{ijk} - 1} + \beta^{ijk}s_t^{ij} + \gamma^{ijk}z_t^{jk}$$
(2)

In this equation, $\beta^{ijk} = \partial p_t^{ijk} / \partial s_t^{ij12}$ measures the sensitivity of export prices to exchangerate changes (therefore, it is the pricing-to-market coefficient - thereafter noted PTM) which is inversely related to the magnitude of the pass-through: it is null when the pass-through is complete and unitary when currency changes are fully absorbed into margins, leaving the local currency price unchanged (zero pass-through/full pricing-to-market).

As detailed in Knetter (1989), this coefficient depends on firms' perception of how demand elasticities change with respect to the local currency price. A sufficient condition for the pass-through to be complete is that of a constant elasticity of demand with respect to the price in the destination market $(\xi_{P_t^{ijk}/S_t^{ij}}^{\eta^{ijk}} = 0)$, implying $\beta^{ijk} = 0$. With such a functional form of demand, exporting firms facing currency changes have no incentive to adjust their mark-up and consumers in the destination market bear the whole nominal shock. Under the alternative hypothesis however, the mark-up depends on the bilateral exchange rate and the optimal pass-through is incomplete. To rationalize such a behavior, suppose that *i*'s currency appreciates $(d \ln S_t^{ij} < 0)$, which has a negative impact on *i*'s price competitiveness. Firms from *i* then have an incentive to compress their export mark-up to mitigate the price impact of the exchange-rate shock and maintain their market share, in what case β^{ijk} is positive. On the other hand, one cannot rule out the possibility of a negative PTM coefficient, leading to an over-reaction of export prices to exchange-rate movements, which would however occur for highly specific forms of demand.

Thus, in a monopolistic framework, the optimal PTM strategy solely depends on the perceived elasticity of demand: it is positive when the elasticity of demand increases with prices. In this case however, the size of the optimal pass-through is limited by the level of the elasticity of demand as the firm's ability to absorb exchange-rate variations decreases with its mark-up in more elastic markets.

$${}^{12}\text{where }\beta^{ijk} = \frac{\xi^{\eta}_{P_t^{ijk}/S_t^{ij}}}{\eta^{ijk} - 1 + \xi^{\eta^{ijk}}_{P_t^{ijk}/S_t^{ij}}} \text{ with } \xi^{\eta^{ijk}}_{P_t^{ijk}/S_t^{ij}} = \frac{\partial \ln \eta^{ijk}_t}{\partial \ln(p^{ijk}_t/S_t^{ij})}$$

¹¹Lowercase letters refer to the natural logarithm of the corresponding variables. For details, see Appendix A.1.

Such a modeling of PTM however relies on the assumption of monopolistic competition. As shown by the rich literature describing PTM behaviors within some specific market structures, this is an obvious limitation. The following sub-section thus provides some intuitions about other product-specific features that could influence firms' incentive to price-to-market.

2.2 Other sources of incomplete pass-through

The limitation of the monopolistic competition framework in describing PTM is easily evidenced within a more general oligopolistic framework. Indeed, under oligopolistic Cournot competition, the optimal mark-up still negatively depends on the price-elasticity of demand but also increases with the producer's market share in the destination market.¹³ As a consequence, the optimal price reaction to currency changes is affected by the exporter's market share¹⁴ and the constancy of the elasticity of demand with respect to the price in local currency is no more a sufficient condition for complete pass-through. The direction of the relation between the PTM elasticity and the market share is however ambiguous. Under weak assumptions on the functional form of demand, Feenstra, Gagnon & Knetter (1996) show that the pass-through elasticity "might initially decline as market share rises, but will increase towards unity as market share approaches 100 percent".¹⁵ Indeed, starting from a low enough market share, an increase in the exporter's market share gives the firm a wider room for maneuver to absorb exchange-rate changes through mark-up adjustments. If its initial market share is high however, a further expansion of it makes its market power so strong that its incentive to price-to-market decreases.

Several analyses also describe PTM as a pricing reaction to competitive pressures encountered by the exporting firm in the destination market. Indeed, as argued by Taylor (2000), the strengthening of competition in the destination market forces firms to follow the market price, and therefore to absorb exchange-rate changes. Such a determinant of PTM is difficult to measure empirically, but one can still hope to identify higher PTM coefficients in atomistic, low differentiated markets. In the same line, impediments to market entrance such as sunk costs as in Baldwin & Krugman (1989) - or consumers switching costs (Froot & Klemperer (1989)) could provide the exporter with a wider room to pass exchange-rate movements into local prices, so that PTM is less likely.

Pricing-to-market can also emerge in relation to the firm-specific technological function. For instance, Devereux, Engel & Storgaard (2004) and Patureau (2004) underline the influence of the cost structure, arguing that an incomplete pass-through strategy is less costly if marginal costs also covary with exchange rates.¹⁶ On the other hand, Corsetti & Dedola (2002) explain incomplete pass-through by the existence of distribution costs in the destination market that affect pricing strategies. Last, pricing-to-market can also depend on the availability of

¹⁴More precisely, under oligopolistic competition,

$$\beta^{ijk} = \frac{\omega_t^{ijk}(\xi_{P^{ijk}/S^{ij}}^{\eta^{ijk}} - \xi_{P^{ijk}/S^{ij}}^{\omega^{ijk}})}{\eta_t^{ijk} - \omega_t^{ijk} + \omega_t^{ijk}(\xi_{P^{ijk}/S^{ij}}^{\eta^{ijk}} - \xi_{P^{ijk}/S^{ij}}^{\omega^{ijk}})}$$

with $\omega_t^{ijk} = \frac{Q_t^{ijk}}{\sum_i Q_t^{ijk}}$ *i*'s market share in *j* and $\xi_{P^{ijk}/S^{ij}}^{\omega^{ijk}} = \frac{\partial \ln \omega^{ijk}}{\partial \ln P_t^{ijk}/S_t^{ij}}$

¹⁵With our notations, this means that one expects the relation between an exporter's market share ω_t^{ijk} and her optimal PTM coefficient β^{ijk} to be first positive until a given market share threshold after what β^{ijk} should decrease.

¹⁶This particular determinant cannot however be investigated in the following as the estimated equation controls for any cost change using fixed effects.

¹³See Varian (1978).

financial products that limit the exposure of exporters' profits to exchange-rate fluctuations, as in Friberg (1998) or Aizenman (2004).

These papers all show that, once departure from the perfect competitive framework is allowed, firms may feel incentives to price-to-market, even when facing constant elasticity of local demand. Both the determinants of such a decision and the magnitude of the PTM coefficient rely on various microeconomic determinants that the following, product-level, empirical study investigates.

3 Data and empirical strategy

3.1 From the theoretical model to the estimated equations

According to the monopolistic competition model, pass-through coefficients should be estimated within the framework of the following equation¹⁷:

$$d\ln P_t^{ijk} = (1 - \beta^{ijk}) d\ln M C_t^{ik} + \gamma^{ijk} d\ln Z_t^{jk} + \beta^{ijk} d\ln S_t^{ij}$$
(3)

where:

- β^{ijk} is the pricing-to-market coefficient, which is specific to the exporter (*i*), the country of destination (*j*) and the product (*k*),
- P_t^{ijk} is the export price, in the exporter's currency,
- MC_t^{ik} is the exporter- and product-specific marginal cost in the exporter's currency,
- Z_t^{jk} is a set of importer-specific features of the sectoral demand, influencing price decisions,
- and S_t^{ij} is the nominal bilateral exchange rate between *i* and *j*.

Both marginal costs and importer's demand characteristics are highly difficult to evaluate, and even more at the product level. Fixed effects are thus used as proxies, which leads to the following empirical equation:

$$d\ln P_t^{ijk} = \alpha^{ik} fix_t^{ik} + \delta^{jk} fix_t^{jk} + \beta^{ijk} d\ln S_t^{ij} + \epsilon_t^{ijk}$$
(4)

where fix_t^{ik} and fix^{jk} are fixed effects that respectively account for *it*- and *j*-specific determinants of price changes. fix_t^{ik} therefore catches, among others, marginal cost changes or evolutions of the competition among firms located in *i*, that influence price decisions of firms producing *k* in *i*. As far as the importing country is considered, the fixed effect (fix^{jk}) has a restricted dimension because of data constraints: we are forced to assimilate the growth of country-specific features $(d \ln Z_t^{jk})$ to a linear trend and a residual (ϵ_t^{ijk}) .¹⁸

In order to accurately identify the structural determinants of pass-through, the number of dimensions of the equation has to be reduced. Therefore, PTM elasticities are estimated

¹⁷In the following, PTM coefficients are estimated from equations in first differences to limit the risk of spurious regressions if some explanatory variables, notably exchange rates, were non-stationary.

¹⁸This hypothesis seems preferable, as it allows to keep an *it* fixed effect, which is likely to catch marginal cost developments in country *i* better than such variables as the production price index or unit labor costs, which are (imperfect) measures of marginal costs. Moreover, the *it* fixed effect catches the impact of exchange-rate changes on marginal costs, thus cleaning up the estimate of the exchange-rate pass-through. Our PTM estimates thus only reflect the sensitivity of margins to exchange-rate movements.

for each product k by pooling all bilateral prices. This allows to estimate sector-specific PTM coefficients, that omit the potential heterogeneity of PTM decisions across exporters as well as among importers. Hence, the baseline equation for identifying this "mean" PTM coefficient is the following:¹⁹

$$d\ln P_t^{ijk} = \alpha^k fi x_t^{ik} + \delta^k fi x^{jk} + \beta^k d\ln S_t^{ij} + \epsilon_t^{ijk}$$
⁽⁵⁾

This equation is estimated at the product-level using weighted OLS, thus assuming the itand j-specific effects to be fixed. Indeed, as our country coverage is exhaustive, assuming random effects would not be appropriate. The weighting scheme is based on the value of each bilateral flow, with two-period weights as in the computation of Tornqvist price indices:

$$w_t^{ijk} = 0.5 \left(\frac{V_{t-1}^{ijk}}{V_{t-1}} + \frac{V_t^{ijk}}{V_t} \right)$$
(6)

with our usual notations for countries and sector subscripts and V_t^{ijk} the value of the considered trade flow in dollar. V_t is world trade at time t.

3.2 The data

Exchange-rate pass-through estimates in the literature are usually confronted with a tradeoff to be made between the sectoral disaggregation level of data and the country coverage. Basically, estimates using aggregate price data allow for a larger country coverage and higher frequency of data. However, price data is not much reliable in this case, as pointed out by Lavoie & Liu (2004): the use of aggregate price series might bias the PTM estimates, as it is then impossible to disentangle between PTM reflecting price discrimination and PTM reflecting product differentiation.²⁰

Working on disaggregated price data offers an alternative solution, as the aggregation bias should then be minimized. However, this choice has a cost in terms of the data frequency, since highly disaggregated data is mostly available on an annual basis, thus constraining to study "long-run" rather than "short-run" pass-through.²¹ Moreover, in most existing studies, this has also a cost in terms of the country coverage, as product-level reliable data is essentially available for a small number of developed countries. As our empirical strategy requires to pool data across countries, this would create a selection bias.

In this paper, we use a new trade database, which provides an alternative solution to available datasets. Indeed, the BACI database, developed at CEPII, provides with trade data drawing on the most detailed available level of disaggregation (the hs6 level), obtained from the United Nations COMTRADE database.²² Data are harmonized in order to allow for a reconciliation of import and export declarations, and trade flows are reported both in value and

¹⁹Here, indices k are not set to indicate that estimates use heterogeneous coefficient panel methods. They rather mean that, as this equation is estimated separately for each product, the obtained coefficients are product-specific.

²⁰Lavoie & Liu (2004) show that this latter "pseudo-PTM" can be sizeable for aggregated price series when vertical differentiation is important.

²¹Indeed, the incomplete pass-through is a short-run phenomenon, which effects vanish when producers adjust their price or the exchange rate returns to its former value. Several studies thus use cointegration methods to disentangle short-run and long-run pass-through. According to Campa & Goldberg (2004), the long-run is reached after one year.

 $^{^{22}}$ The *hs*6 level is the highest possible level of disaggregation with an exhaustive geographical coverage. For more details on the content and building of the BACI database: http://www.cepii.fr/anglaisgraph/bdd/baci/baci.pdf

quantity. The whole database covers more than 130 countries and 5, 000 products during the 1989-2003 period with an annual frequency.

The product-level price series P_t^{ijk} used as the dependent variable in our estimations are computed using unit values, i.e. FOB trade values divided by harmonized quantities (in tons). These unit values are denominated in current US dollars. Converting these variables into the exporter's currency using the nominal exchange rate would however not change the picture since the i/\$ nominal exchange rate is controlled for by the fixed effects fix_t^{ik} . Unitvalues may suffer from measurement errors, even at this disaggregation level, leading to a bad estimation of pass-though coefficients at the product level. A number of precautionary measures are implemented to circumscribe the impact of such data problems. First, the fixed effects control for unobserved systematic errors.²³ Moreover, only the coefficients that are estimated with a sufficient level of robustness are taken into account in the microlevel analysis. Namely, we only consider the coefficients for which a sufficient number of observations (500) is available for the whole estimation period. This quite demanding constraint allows to drop estimates which are computed with a too limited degree of freedom. The choice of the exchange-rate variable is not trivial either. While theory suggests to use nominal exchange-rate data, the empirical literature generally deflates this series by a measure of the general price level in the destination market²⁴ (see Gagnon & Knetter (1995) or Knetter, 1989, 1993). This choice aims at identifying pure exchange-rate shocks, as opposed to exchange-rate variations that respond to general inflation. Similar definitions are used in Takagi & Yoshida (2001), Gil-Pareja (2003), Parsley (2002) and Athukorala & Menon (1994). Last, in order to ensure the highest quality for estimates, some filtering is imposed to the series: episodes of very high exchange-rate volatility are excluded by constraining annual (nominal) exchange-rate changes to lie between -50 and 50%.

4 Pricing-to-market for the whole sample

In this section, we present results of the estimation of (5) at the product-level k. Keeping only estimates obtained from more than 500 observations still leaves more than 4419 product-specific coefficients available. Descriptive statistics concerning this sample are displayed in Table 1.

	Mean		Lower	ower quartile		Median		Upper quartile	
	Unweighted	Weighted*	Unweighted	Weighted*	Unweighted	Weighted*	Unweighted	Weighted*	
PTM coef.	0.115	0.036	-0.075	-0.123	0.142	0.098	0.333	0.311	
(Stud.)	(1.321)	(1.195)	(-0.528)	(-1.070)	(1.198)	(1.105)	(3.020)	(3.664)	
Nb.Obs.				44	19				

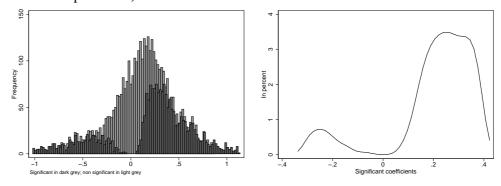
Table 1: Pricing to market at the product level, summary statistics

* The weighting scheme is based on the value of exports. See Footnote 21.

Restrictions: number of available bilateral flows at the hs6 level > 500,

exchange-rate changes ranging between -50% and +50%

Source: Authors' calculations.


²³As importer-fixed effects are restricted in their time dimension, one cannot rule out the possibility that trends in the importing country characteristics bias the estimates. Here, the data are binding, and no alternative solution is available.

²⁴Note that, in presence of exporter-time fixed effects, an equivalent correction using the price level in the exporting country is unnecessary.

The results are somewhat different whether weighted²⁵ or unweighted statistics are used. The unweighted statistics are usually of higher magnitude, which suggests that PTM is lower in large sectors (defined in terms of exported values). Consistent with previous findings, estimates suggest that the pass-through is quite high in the long-run: the average PTM coefficient of .115 implies a pass-through rate of almost 90%.

This result requires some qualification however, given the rather high number of non-significant PTM coefficients (see Figure 1). Indeed, nearly half of estimates are not significantly different from zero, meaning that export prices are not sensitive to currency changes.²⁶ This suggests that the incomplete pass-through phenomenon is limited to the other half of products. Once non-significant PTM coefficients are dropped, the unweighted median PTM coefficient is increased to almost 30%. Moreover, the hypothesis of full PTM ($\beta^k = 1$) cannot be rejected in 308 of the 4419 considered hs6 industries.

Figure 1: Share of significant and non-significant estimated coefficients (at the 5% significance level) and distribution of significant estimated coefficients (from the 5^{th} to the 95^{th} percentile)

Source: Authors' calculations

This general picture highlights the strong heterogeneity in PTM across products. Even for the 50% of coefficients for which significant PTM is found, illustrated in the second graph of Figure 1, the inter-quartile range ([0.12;0.49]) still implies a wide dispersion of PTM coefficients.

Because drawing short insights from more that 4,000 coefficients is quite difficult, a first step is to have a look on wider categories, in order to gauge whether large-sector specificities can be outlined.

This is what is done in Table A.1. in the Appendix, where information on the PTM coefficients at the hs2 level is displayed. This information relates to the share of significant coefficients, the median PTM coefficient, and the standard error computed over the hs6 coefficients of each hs2 category. There is clear evidence of strong heterogeneity across hs2categories in terms of their median estimate. The largest PTM coefficient is obtained for products of the "Fur skins and artificial fur" hs2 category, for which (weighted) the median coefficient across hs6 sectors is 0.60. The lowest one is obtained for the "Ships, boats and

²⁵Here, the weighting scheme relies on the traded value of each product throughout the estimation period. Indeed, we can no more use Tornqvist weights (6) which have a time dimension, contrary to estimates.

 $^{^{26}}$ Here as in the rest of the paper, we call significant those coefficients that pass the Student test at the 5% level.

floating structures" industry with a coefficient of -1.40. However, as shown by the share of significant coefficients in each category, which generally lies around 50%, and the high variance of hs6 coefficients inside each hs2 category, these statistics hide a strong heterogeneity between hs6 sectors of a given category.

Because of this heterogeneity within hs^2 categories, investigating the structural dimension of pricing-to-market cannot be done on the basis of these median estimates, but has to be undertaken at the most disaggregated level. The huge number of studied products however makes the project tricky. As an illustration, consider Table A.2. which displays significant PTM estimates for which the hypothesis of full PTM ($\beta^k = 1$) cannot be rejected. The heterogeneity of industries that are gathered together is obvious, and no intuition arises as to the features that could lead the corresponding firms to fully absorb exchange-rate movements into their margins. To further deepen the analysis, two alternative strategies are implemented. In a first step, the products are brought together within a limited number of (exogenously chosen) sub-samples, reflecting either the nature of the goods or the kind of market structures featuring production. In a second step, trade data are used to build market structure indicators, which influence on PTM strategies is then tested.

5 Determinants of pass-through behaviors

As stated in Section 2, a number of product- or even firm-specific features might affect PTM. Some of them are linked to the price-elasticity of demand. As the price sensitivity is likely to vary across products, one can think of such an argument to explain the dispersion of PTM estimates across hs6 products. On the other hand, the intensity of competitive pressures faced by firms in their export markets is often presented as an important determinant of pass-through. Contrasting with the previous one, this determinant is likely to vary across exporters or importing markets in a given sector. Both kinds of determinants are studied in the following.

5.1 Organized versus differentiated products markets

Market organization is likely to indirectly influence pricing strategies through its impact on the feasibility of arbitrage: for instance, the less transparent a market with regard to the whole supply of goods available for consumption, the easier it is for firms to pass exchange rate movements and make maximum profits on their sales. To investigate for such PTM determinants, we use two classifications that split goods into categories according either to the organization of markets or to the nature of traded products. The first one was built by Rauch (1999), the second by the UNO (Broad Economic Classification - thereafter BEC).

The classification developed by Rauch is based on the structure of the market where goods are traded. This classification gathers 5-digit SITC industries into three categories, depending on whether the goods are: (a) traded in an organized exchange, and therefore treated as "homogeneous" (W), (b) not traded in an organized exchange, but having some quoted "reference price" (R), such as in industry publications, (c) not having any quoted prices, and therefore treated as "differentiated" (D). The Broad Economic Classification (BEC) developed by the UNO provides an alternative classification scheme for traded products, where goods can be split into 5 categories, i.e. final consumption, investment, primary products, parts and components and transformed products. It is therefore possible to investigate and compare PTM in these various product categories.

Because the two classifications are not completely orthogonal, looking at PTM in each category independently would not yield very informative results. Therefore, the categories are

	Number of	Share of signif.
	coefficient	coefficients (%)
Differentiated goods / Final consumption goods	605	51.2
Differentiated goods / Investment goods	378	33.3
Differentiated goods / Primary products	40	47.5
Differentiated goods / Parts and components	198	39.4
Differentiated goods / Transformed products	675	48.3
Referenced prices / Final consumption goods	55	60.0
Referenced prices / Primary products	57	36.8
Referenced prices / Transformed products	630	48.6
Organized markets / Final consumption goods	19	47.4
Organized markets / Investment goods	3	66.7
Organized markets / Primary products	37	37.8
Organized markets / Transformed products	70	40.0

Table 2: Distribution of pricing-to-market coefficients within the BEC-Rauch classifications

Source: Authors' calculations

interacted. The PTM estimates at the product level are then split into the resulting 15 categories. Because some of them are empty, only 12 categories were eventually used. It is therefore possible to investigate the impact of the market structure on the PTM coefficients estimated at the product level, depending on the Rauch/BEC category to which each product belongs. 2,700 products are included in the analysis²⁷, for which at least 500 observations where available when estimating PTM coefficients.

Table 2 shows how these coefficients are distributed across the 12 available items of the crossed classification. Differentiated goods dominate the sample, but there are also a good deal of transformed products sold on referenced markets. As shown in the second column, the share of significant coefficients lies between 35 and 60%, and significant coefficients are overwhelming for final consumption goods sold on referenced markets²⁸ - although there are very few of these.

Under monopolistic competition, one would expect pricing-to-market to be less important on differentiated markets, where firms own a monopoly power and the demand is less priceelastic. However, the expectation is less clear under oligopolistic competition, where firms could feel an incentive to adjust their margins, in order to stay in the market when adverse exchange-rate changes occur. On the other hand, referenced markets should be characterized by strong pricing-to-market, because of a higher price sensitivity of consumers, who can easily compare varieties. These arbitrage behaviors might lead firms to keep in line with the market price. Last, organized markets should be characterized by complete pass-through, as the corresponding prices result from adjustments in the world demand and supply, and are

 $^{^{27}}$ A number of *hs*6 sectors could not be matched with Rauch's SITC nomenclature. As a consequence, the number of available coefficients is considerably reduced in comparison with the 4,419 estimates commented in the previous section.

²⁸As there are only three coefficients for investments goods sold on organized markets, one can ignore this category.

	n	Weighted mean	Low. quartile	Median	Upp. quartile
Diff + final cons	605	0.260	0.163	0.345	0.408
Diff + investment goods	378	-0.067	-0.163	0.072	0.269
Diff + primary products	40	0.358	0.092	0.320	0.628
Diff + parts and components	198	0.001	-0.105	0.016	0.131
Diff + transformed products	675	0.200	0.031	0.230	0.345
Ref + final cons	55	0.168	0.036	0.160	0.300
Ref + primary products	57	0.170	-0.015	0.143	0.320
Ref + transformed products	630	0.209	0.079	0.060	0.351
Org + final cons	19	0.173	0.009	0.214	0.348
Org + investment goods	3	0.515	0.505	0.505	0.583
Org + primary products	37	-0.002	-0.098	0.017	0.049
Org + transformed products	70	0.020	-0.051	0.022	0.075

Table 3: Pricing-to-market coefficients and the BEC-Rauch classifications

Source: Authors' calculations.

therefore orthogonal to bilateral exchange-rate changes.

As far as the BEC classification is concerned, one can also expect different kinds of consumers (final consumers, firms, etc.) to be differently sensitive to price changes. However, the direction of the results is difficult to foresee. Indeed, as far as final consumption goods are concerned, differentiation should provide firms with a higher market power, allowing them to pass exchange-rate movements onto prices; but competitive pressures can also be strong on these markets so that firms are constrained by their competitors' pricing decisions. Primary products are generally sold on organized markets, where prices are set by international demand. If prices are denominated in a reference currency, which is not the currency of the exporter, producers cannot depart from the reference price, and they entirely bear the impact of the fluctuations between their currency and the currency of denomination of contracts. Therefore, the measured pass-through should be nil.

Parts and components are highly specific goods sold to firms. When the production of components is outsourced, competition among providers could force them to price-to-market; but transfer pricing strategies in intra-firm relations could also lead to unexpected results.²⁹ Finally, transformed products and investment goods are too heterogeneous categories for results to be foreseen.

Summary statistics of PTM behaviors by product type are displayed in Table 3. Pricingto-market coefficients are the highest for investment goods sold on organized markets. This could be consistent with strong transparency in such markets, however cautiousness is needed in drawing conclusions, given the very limited number of observations. Pricing-to-market is also sizeable for transformed products sold on organized markets, which is another indication that organized markets tend to increase price transparency, and consequently the incentives for firms to keep in line with market prices when setting their own prices. Here, the results can be considered as more reliable, given the large number of observations, and the fact that PTM is large over all quartiles of the distribution of product-specific PTM estimates. Finally, PTM is also large for the two other sectors that gather a large number of estimates, i.e. differentiated products for final consumption and differentiated, primary products. Here, the large magnitude of PTM coefficients would be consistent with oligopolistic

²⁹See evidences of the impact of transfer pricing on measured PTM in Rangan & Lawrence (1993).

market structures, where firms try to remain in the market by adjusting their margins to exchange-rate changes. Large PTM coefficients are also consistent, for final consumption goods, with strong competitive pressures forcing firms to keep their prices in line with those of their competitors. Finally, the size of PTM in parts and components (centered around zero) is consistent with the argument that PTM estimated on trade flows among vertically linked firms could be biased by transfer prices.

In order to further deepen the analysis, the impact of a product belonging to a given category of the Rauch-BEC classification is econometrically investigated. Dummy variables are built for each item of each classification, and their explanatory power for the magnitude of PTM estimates is investigated through an OLS regression in which the observations (i.e. the estimated PTM coefficients $\hat{\beta}^k$) are weighted by the inverse of the estimated standard error.³⁰ As the dummies describe the whole dataset, they cannot be included all together in the equation. Therefore, a constant is added in the equation and the impact of the interacted categories is analyzed in relation to a given category of each classification (namely, the organized markets and the transformed products). The estimates yield the following results:³¹

$$\beta^{k} = 0.07^{*} + 0.06n + 0.11^{***}r + 0.07^{***}C - 0.11^{***}K - 0.00P - 0.22^{***}PC, \quad R^{2} = 3.8\%$$

(.035) (.037) (.037) (.020) (.029) (.039) (.034) (7)

where *n* refers to differentiated products, *r* to referenced prices, *C* is for final consumption goods, *K* for investment goods, *P* for primary goods and *PC* for Parts and components. Although the R^2 is very low, this confirms previous findings that pricing-to-market tends to be more important for reference-price markets than in organized markets. Moreover, in comparison with transformed goods, PTM behaviors are significantly more pronounced towards final consumers and much lower for investment goods as well as parts and components.

5.2 Bilateral Market structures

Beyond the nature of the goods sold in each sector, the competitive pressure faced by each firm in each of her export markets is also able to influence pass-through strategies. This implies that the product-level coefficients estimated so far can still hide some heterogeneity across destination markets. This question is investigated in the following, using product-level market structure indicators built out of trade data.

5.2.1 Using trade data to measure market structures

The bilateral dimension of the BACI database allows us to build a number of market structure indicators, to explore the oligopolistic competition dimension of pass-though. Here, we focus more particularly on three market-structure variables.

The first indicator, noted $MKSH_t^{ijk}$, is the market share of country *i* in market *j* for product k at time *t*. It can be considered as a proxy for the exporter's pricing power in the destination country. As suggested by Feenstra et al. (1996) or Bachetta & Van Wincoop (2005), pricing-to-market should be affected by the producer's market share in the destination market, in a non-linear way however. The indicator is computed as follows:

$$MKSH_t^{ijk} = \frac{M_t^{ijk}}{M_t^{jk}} \tag{8}$$

³⁰This weighting scheme is chosen in order for badly estimated coefficients to have lower weight in the regression.

³¹Figures under brackets are the estimated standard errors of the coefficients.

with M_t^{ijk} denoting the value of product k imported by j from the country i and M_t^{jk} the total amount of product k imports by country j. Note that this definition of market share does not account for local competitors.

The second indicator, denoted $SIZE_t^{ijk}$ describes the weight of market j in country i's exports:

$$SIZE_t^{ijk} = \frac{X_t^{ijk}}{X_t^{i.k}} \tag{9}$$

with X_t^{ijk} the amount of *i*'s exports of product *k* towards *j*'s market and $X_t^{i.k}$ the total value of its exports of product *k*. Here, the underlying hypothesis is that, as demand-related risks increase with the relative size of the partner country, exporters may be less reluctant to absorb exchange-rate changes to preserve their position in a large market than in a smaller one (see Lee (1995) for a theoretical relation between PTM and the size of countries).

The last indicator is a Herfindhal index, which summarizes the concentration of supply in the destination market, therefore the degree of competitive pressure. This indicator, which relies on the assumption that each national representative firm is a monopoly³², ranges from 0 to 1 and increases with concentration. It is computed as follows:

$$HERF_t^{jk} = \sum_i \left(MKSH_t^{ijk} \right)^2 \tag{10}$$

As in the case of market shares, the relation between the Herfindhal index and PTM elasticities is not clear. Starting from an atomistic market, an increase in the market concentration allows firms to have higher mark-ups, then a wider room of manoeuvre to absorb exchangerate movements. On the other hand, when the market becomes concentrated enough, collusive behaviors give firms a pricing power to pass exchange-rate movements.

5.2.2 Results

The previously described indicators are interacted with exchange-rate changes, in order to properly catch their impact on PTM coefficients. As these indicators are probably colinear³³, three distinct estimates are conducted at the product-level, each one studying the impact of one of them. Because the degree of freedom in the estimations is generally low, the market structure variables are only used in level, even though the theoretical effect is not necessarily linear. The estimated equations are the following:

$$d\ln P_t^{ijk} = \alpha + \beta_1^k d\ln S_t^{ij} + \beta_2^k MKSH_t^{ijk} d\ln S_t^{ij} + \nu_t^{ik} + \mu^{jk} + \epsilon_t^{ijk}$$
(11)

$$d\ln P_t^{ijk} = \alpha + \beta_1^k d\ln S_t^{ij} + \beta_3^k SIZE_t^{ijk} d\ln S_t^{ij} + \nu_t^{ik} + \mu^{jk} + \epsilon_t^{ijk}$$
(12)

$$d\ln P_t^{ijk} = \alpha + \beta_1^k d\ln S_t^{ij} + \beta_4^k HERF_t^{jk} d\ln S_t^{ij} + \nu_t^{ik} + \mu^{jk} + \epsilon_t^{ijk}$$
(13)

and we expect $\beta_1^k \ge 0$, $\beta_2^k \ge 0$ if $MKSH_t^{ijk}$ is low enough but $\beta_2^k \le 0$ for large market shares, $\beta_3^k \ge 0$, $\beta_4^k \le 0$ for a concentrated enough market, $\beta_4^k \ge 0$ in atomistic markets. Table 4 displays the summary statistics of the product-level estimates, that are also illustrated in Figure 2.

³²Hence, national firms only compete on the destination market.

³³The colinearity may be especially pronounced between $MKSH_t^{ijk}d\ln S_t^{ij}$ and $HERF_t^{jk}d\ln S_t^{ij}$, as the correlation between these series is 0.80.

Model	Estimates	Mean	Lower	Median	Upper	Share of
			quartile		quartile	sign. (%)
Equation (11)	β_1^k	0.163	-0.129	0.172	0.453	45
		(1.054)	(-0.605)	(1.010)	(2.676)	
	eta_2^k	-0.095	-0.667	-0.083	0.488	45
		(-0.268)	(-1.983)	(-0.296)	(1.420)	
Equation (12)	eta_1^k	0.108	-0.167	0.127	0.356	50
		(0.948)	(-0.848)	(0.954)	(2.738)	
	eta_3^k	0.145	-0.645	0.123	0.902	52
		(0.522)	(-1.700)	(0.342)	(2.420)	
Equation (13)	eta_1^k	0.198	-0.177	0.208	0.565	46
		(1.053)	(-0.664)	(0.934)	(2.703)	
	eta_4^k	-0.174	-0.870	-0.149	0.514	44
		(-0.440)	(-2.078)	(-0.394)	(1.224)	

Table 4: Product-level PTM coefficients and market structures

Restrictions: number of flows by product>500,

Exchange rate changes between -50 and 50%.

Source: Autors' calculations.

Whatever the structural indicator, the interaction with the exchange rate yields a significant coefficient in about half of the industries. This low rate of significance is however not surprising as the tested effects are derived from specific frameworks that might not fit all products. Once insignificant coefficients are ignored, results are however generally consistent with expectations.

On average, the "pure" PTM coefficient $(\hat{\beta}_1^k)$ is positive, whatever the considered set of estimations (relying on 11, 12 or 13). When controlling for the effects of the exporter's market share and the concentration of the destination market, the mean PTM coefficient β_1^k is even higher than in the benchmark estimation of Section 4. This means that the pricing-to-market phenomenon is still significant at the product level, even when controlling for these structural dimensions.

As shown by the estimation of (11), a higher market share dampens PTM at the product level for more than half the products, and this share increases when insignificant coefficients are dropped (the median coefficient then shifts to -0.46). This suggests that the monopoly power bestowed on a firm by a large market share dominates its reaction to currency changes, leading her to price less to market.

The influence of the destination market size is investigated through equation (12). On average, export towards important partners exhibit a higher degree of PTM, consistently with the idea that the demand risk in "large" markets (relatively to the total value of an individual firm's exports) prompts firms to price-to-market. When unsignificant coefficients are dropped, the median coefficient $\hat{\beta}_{3}^{k}$ increases to 0.56.

Last, PTM tends to be less pronounced in concentrated markets, in which collusive behaviors are more likely to arise. When insignificant coefficients are dropped from the distribution, the median coefficient affected at this interacted variable is equal to -0.74.

These results therefore tend to confirm that structural determinants connected to market structures - i.e. to oligopolistic competition - are in play when pricing-to-market is designed. Of course, these forces are not in play in each individual product-market, which explains the strong heterogeneity of results across products. On average however, PTM seems to depend on market structures: it is all the lower that the exporter owns a large market share in the destination market or that the destination market is concentrated, whereas exporters are less reluctant to absorb currency changes when the destination is large in terms of demand.

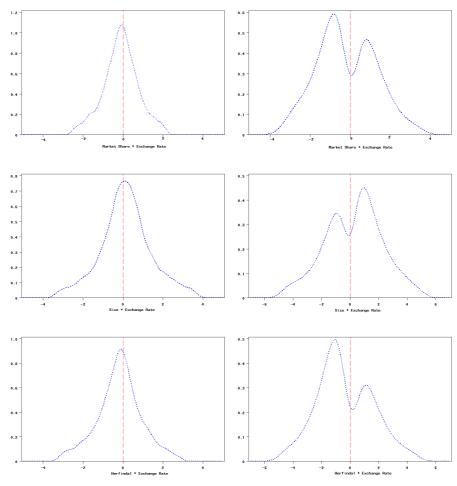


Figure 2: PTM micro-estimates, including or not non-significant estimates

Source: Authors' calculations.

6 Conclusion

Exchange-rate pass-through is a typical micro-based phenomenon that bears macro-economic consequences. A large literature has been devoted to estimate the sensitivity of various national price indexes to currency changes, thereby investigating the consequences on external

exposure. On the other hand, the origin of the incomplete pass-through phenomenon is often disregarded in empirical studies. This paper uses a highly disaggregated database to study the product dimension of this phenomenon, through the estimation of pricing-to-market co-efficients at the most detailed product-level (4419 estimated PTM elasticities).

According to the average value of product-level estimates, on average 11.5% of the currency shock is absorbed into the exporter's mark-up during the year following an exchange-rate change. This quite sizeable long-run pricing-to-market coefficient however hides a strong heterogeneity across products, even among hs6 products of a given hs2 category. Thus, incomplete pass-through is identified for roughly half of the products, with however strong discrepancies in terms of magnitude.

Investigating the structural determinants of this heterogeneity leads to some additional conclusions. First, pricing-to-market is shown to be more marked within referenced-price markets, probably because of the pressure exerted by consumers' arbitrage. Moreover, the magnitude of the pricing-to-market seems to depend on the identity of the buyer: currency changes are more likely to be absorbed by firms in final consumption good markets than for products sold to firms. Beyond these features, the specific market structures encountered by each exporter in each destination country also seem to affect pricing decisions. Estimates suggest that, on average, pricing-to-market is less pronounced in concentrated (i.e. lowly competitive) markets and where the exporter already has a large market share, which could mean that firms with a sufficient pricing power are more able to pass exchange-rate movements into local currency prices. By contrast, high PTM coefficients are more likely to be observed in large markets, from the individual exporter's point-of-view. This suggests that the perceived risk of demand may be important in explaining pass-through decisions.

Consistent with the conclusions of recent, micro-funded models of incomplete pass-through, structural factors turn out to be important in explaining the behavior of prices when exchange rates fluctuate. Detailing the mechanisms at work behind this result is constrained by data availability: even at the most detailed product-level, the number of structural factors that can be built is limited, and often relies on strong assumptions. More precisely, trade data compel each exporting country to be assimilated to a representative firm facing the "mean" market structures. This is obviously a strong assumption, that constraints our ability to identify the impact of market structures on pricing decisions. The next step of this research will consequently be to investigate pass-through strategies at the firm rather than at the country level.

References

- Aizenman, J. (2004), 'Endogenous pricing to market and financing costs', *Journal of Monetary Economics* **51**, 691–712.
- Anderton, B. (2003), 'Extra-euro area manufacturing import prices and exchange-rate passthrough', ECB Working Paper 219.
- Athukorala, P. & Menon, J. (1994), 'Pricing to market behaviour and exchange rate passthrough in japanese exports', *Economic Journal* **104**, 271–281.
- Bachetta, P. & Van Wincoop, E. (2005), 'A theory of the currency determination of international trade', *Journal of International Economics* forthcoming.
- Baldwin, R. & Krugman, P. (1989), 'Persistent trade effects of large exchange rate shocks', *The Quarterly Journal of Economics* **104**(4), 635–54.
- Bergin, P. & Feenstra, R. (1998), 'Staggered price setting and endogenous persistence', UC Davis Working Paper 9805.
- Betts, C. & Devereux, M. B. (1996), 'The exchange rate in a model of pricing to market', *European Economic Review* **40**, 1007–1021.
- Campa, J. M. & Goldberg, L. S. (2004), 'Exchange-rate pass-through into import prices', *CEPR Discussion Paper* **4391**.
- Campa, J. M. & Minguez, J. M. G. (2004), 'Differences in exchange-rate pass-through in the euro area', CEPR Discussion Paper 4389.
- Corsetti, G. & Dedola, L. (2002), 'Macroeconomics of international price discrimination', *ECB Working Paper* **176**.
- Devereux, M. B. & Engel, C. (2003), 'Monetary policy in the open economy revisited', *Review of Economic Studies* **70**, 765–783.
- Devereux, M., Engel, C. & Storgaard, P. E. (2004), 'Endogenous exchange rate pass-through when nominal prices are set in advance', *Journal of International Economics* **63**, 263–91.
- Feenstra, R. C., Gagnon, J. E. & Knetter, M. M. (1996), 'Market share and exchange rate pass-through in world automobile trade', *Journal of International Economics* 40(1-2), 187–207.
- Friberg, R. (1998), 'In which currency should exporters set their prices', *Journal of International Economics* **45**, 59–76.
- Froot, K. A. & Klemperer, P. D. (1989), 'Exchange rate pass-through when market share matters', American Economic Review 79(4), 637–54.
- Gagnon, J. E. & Knetter, M. M. (1995), 'Markup adjustment and exchange rate fluctuations: Evidence from panel data on automobile exports', *Journal of International Money and Finance* **14**(2), 289–310.
- Gil-Pareja, S. (2002), 'Export price discrimination in europe and exchange rates', *Review of International Economics* **10**(2), 299–312.
- Gil-Pareja, S. (2003), 'Pricing to market behavior in european car markets', European Economic Review 47(6), 945–962.

- Gross, D. & Schmitt, N. (2000), 'Exchange rate pass-through and dynamic oligopoly: an empirical investigation', *Journal of International Economics* **52**(1), 89–112.
- Knetter, M. M. (1989), 'Price discrimination by u.s. and german exporters', *American Economic Review* **79**(1), 198–210.
- Knetter, M. M. (1993), 'International comparisons of pricing-to-market behavior', *American Economic Review* **83**(3), 473–486.
- Krugman, P. (1987), Pricing to market when the exchange rate changes, *in* S. W. Arndt & J. D. Richardson, eds, 'Real Financial Linkages Among Open Economies', Cambridge Mass: MIT Press.
- Lavoie, N. & Liu, Q. (2004), 'Pricing-to-market: Price discrimination or product differentiation?', University of Massachusetts, Amherst, Working Paper Series (2004-11).
- Lee, J. (1995), 'Pricing-to-market in korean manufacturing exports', *International Economic Journal* **9**(4), 1–12.
- Parsley, D. (2002), Pricing in international markets: a 'small-country' benchmark, Technical Report 0211002, Economics Working Paper Archive at WUSTL. available at http://ideas.repec.org/p/wpa/wuwpif/0211002.html.
- Patureau, L. (2004), Le rôle des choix de facturation des exportations dans la segmentation internationale des marchés.
- Pollard, P. S. & Coughlin, C. C. (2003), 'Pass-through estimates and the choice of an exchange rate index', *Federal Reserve Bank of Saint Louis Working Paper* **2003-004B**.
- Rangan, S. & Lawrence, R. Z. (1993), 'The responses of us firms to exchange rate fluctuations : Piercing the corporate veil', *Brookings Papers on Economic Activity* 2, 341–79.
- Rauch, J. R. (1999), 'Networks versus markets in international trade', *Journal of Interna*tional Economics 48(1), 7–37.
- Takagi, S. & Yoshida, Y. (2001), 'Exchange rate movements and tradable goods prices in east asia: An analysis based on japanese customs data, 1988-1999', *IMF Staff Papers* 48(2), 266–289.
- Taylor, J. B. (2000), 'Low inflation, pass-through, and the pricing power of firms', *European Economic Review* **44**(7), 1389–1408.
- Varian, H. (1978), Microeconomic Analysis, Hardcover.
- Warmedinger, T. (2004), 'Import prices and pricing-to-market effects in the euro area', *ECB Working Paper* **299**.
- Yang, J. (1997), 'Exchange rate pass-through in u.s. manufacturing industries', *The Review* of *Economics and Statistics* **79**(1), 95–104.

A.1. Theoretical framework

Pricing-to-market in a monopolistic competition framework

Suppose country i produces good k within a monopolistic framework. The good is sold to different segmented markets j, where producers are therefore able to differentiate export prices according to the destination. At time t, the optimal destination-specific export-price, in the producer's currency, can be written as:

$$P_t^{ijk} = MC_t^{ik}\mu_t^{ijk}$$

with

- MC^{ik}_t the marginal production cost, which is supposed to be identical across destinations (MC^{ijk}_t = MC^{ik}_t, ∀ j)
- μ_t^{ijk} the producer mark-up, which depends on the elasticity of demand to the price in local currency:

$$\mu_t^{ijk} = \frac{\eta_t^{ijk}(P_t^{ijk}/S_t^{ij}, Z_t^{jk})}{\eta_t^{ijk}(P_t^{ijk}/S_t^{ij}, Z_t^{jk}) - 1}$$

where η_t^{ijk} is the price-elasticity of demand, which depends on the price in the importer's currency (P_t^{ijk}/S_t^{ij}) with S_t^{ij} the bilateral exchange rate in *i*'s currency per unit of *j*'s), and possibly on demand-specific variables (summarized by the vector Z_t^{jk}).

First-differentiating with respect to the different variables leads to the following expression for the exporter's price, specific to the market j^{34} :

$$\begin{split} p_{t}^{ijk} &= (1 - \beta_{MC}^{ijk}) m c_{t}^{ik} + (1 - \beta_{MC}^{ijk}) \ln\left(\frac{\eta^{ijk}}{\eta^{ijk} - 1}\right) + \beta_{MC}^{ijk} s_{t}^{ij} - \gamma_{MC}^{ijk} z_{t}^{jk} \\ \text{where } \beta_{MC}^{ijk} &= \frac{\xi_{P_{t}^{ijk}/S_{t}^{ij}}^{\eta^{ijk}}}{\eta_{t}^{ijk} - 1 + \xi_{P_{t}^{ijk}/S_{t}^{ij}}^{\eta^{ijk}}} \text{ with } \xi_{P_{t}^{ijk}/S_{t}^{ij}}^{\eta^{ijk}} = \frac{\partial \ln \eta_{t}^{ijk}}{\partial \ln P_{t}^{ijk}/S_{t}^{ij}} \\ \text{and } \gamma_{MC}^{ijk} &= \frac{\xi_{Z_{t}^{ijk}}^{\eta^{ijk}}}{\eta_{t}^{ijk} - 1 + \xi_{P_{t}^{ijk}/S_{t}^{ij}}^{\eta^{ijk}}} \text{ with } \xi_{Z_{t}^{ik}}^{\eta^{ijk}} = \frac{\partial \ln \eta_{t}^{ijk}}{\partial \ln Z_{t}^{ijk}} \end{split}$$

In this equation, $\beta_{MC}^{ijk} = \frac{\partial p_t^{ijk}}{\partial s_t^{ij}}$ measures the sensitivity of export prices to exchange-rate changes (therefore, it is the pricing-to-market coefficient - thereafter noted PTM) which is inversely related to the magnitude of the pass-through: it is null when the pass-through is complete and unitary when currency changes are fully absorbed into margins, leaving the local currency price unchanged. As detailed in Knetter (1989), this coefficient depends on the firms' perception of how demand elasticities change with respect to the local currency price. A sufficient condition for the pass-through to be complete is that of a constant behavior of the elasticity of demand, with respect to the price in the destination market ($\xi_{P_t^{ijk}/S_t^{ij}}^{\eta^{ijk}} = 0$). Under the alternative hypothesis, when the mark-up depends on the bilateral exchange rate, the optimal pass-through is incomplete. In particular, mark-up adjustments partially offset exchange-rate changes when the PTM coefficient is positive. Since, from the second-order

³⁴Lowercase letters refer to the natural logarithm of the corresponding variables.

condition³⁵, $\xi_{P_t^{ijk}/S_t^{ij}}^{\eta^{ijk}}$ is positive when the price-elasticity is positive, one can expect this to occur when the elasticity of demand with respect to the local price is strong enough (namely when $\eta_t^{ijk} > 1 - \xi_{P_t^{ijk}/S_t^{ij}}^{\eta^{ijk}}$). On the other hand, even if less likely, one cannot rule out the possibility of a negative pass-through coefficient, leading to an over-reaction of export prices to exchange rate movements, which is optimal with an increasing but weak elasticity of demand $(\eta_t^{ijk} < 1 - \xi_{P_t^{ijk}/S_t^{ij}}^{\eta^{ijk}})$.

Thus, in a monopolistic framework, the optimal pass-through depends on the perceived elasticity of demand: in most cases, it is positive when the price-elasticity is increasing in the local price. However, as shown next, generalizing the theoretical framework leads to a richer explanation of pass-through strategies, that does not entirely rely on the perceived elasticity of demand but also on market structures. Such an explanation could help to explain part of the cross-country heterogeneity in pass-through strategies observed on narrowly defined prices.

Oligopolistic competition

The monopolistic competition framework is only a special case of oligopolistic competition. Further generalizing the theoretical framework, by taking oligopolistic competition into account, is therefore of interest. Moreover, the oligopolistic framework is better suited to the available data. Because data availability forces to identify each exporting country to a representative firm, the number of producers for a given product is de facto constrained, and the market is therefore better described by an oligopolistic competition hypothesis.

In an oligopolistic framework under Cournot competition, the optimal margin depends on the price elasticity of demand as well as on the market share of i's representative firm in the destination market j:

$$\mu_t^{ijk} = \frac{\eta_t^{ijk}}{\eta_t^{ijk} - \omega_t^{ijk}}$$

with $\omega_t^{ijk} = \frac{Q_t^{ijk}}{\sum_i Q_t^{ijk}}$ i's market share in j and Q_t^{ijk} the demand addressed by j to the producer i.

Using the same method and notations as previously, the destination-specific export price equation is the following:

$$p_{t}^{ijk} = (1 - \beta_{OC}^{ijk})mc_{t}^{ik} + (1 - \beta_{OC}^{ijk})\ln\left(\frac{\eta^{ijk}}{\eta^{ijk} - \omega^{ijk}}\right) + \beta_{OC}^{ijk}s_{t}^{ij} - \frac{\xi_{Z^{jk}}^{\eta^{ijk}} - \xi_{Z^{jk}}^{\omega^{ijk}}}{\xi_{P^{ijk}/S^{ij}}^{\eta^{ijk}} - \xi_{D^{ijk}/S^{ij}}^{\omega^{ijk}}}\beta_{OC}^{ijk}z_{t}^{jk}$$

where

$$\beta_{OC}^{ijk} = \frac{\partial p_t^{ijk}}{\partial s_t^{ij}} = \frac{\omega_t^{ijk} (\xi_{P^{ijk}/S^{ij}}^{\eta^{ijk}} - \xi_{P^{ijk}/S^{ij}}^{\omega^{ijk}})}{\eta_t^{ijk} - \omega_t^{ijk} + \omega_t^{ijk} (\xi_{P^{ijk}/S^{ij}}^{\eta^{ijk}} - \xi_{P^{ijk}/S^{ij}}^{\omega^{ijk}})}$$

is the theoretical PTM coefficient and

$$\xi_{P^{ijk}/S^{ij}}^{\omega^{ijk}} = \frac{\partial \ln \omega_t^{ijk}}{\partial \ln (P_t^{ijk}/S_t^{ij})}$$

is the sensitivity of the market share to the local price, which is a priori negative.

³⁵The second-order condition of the profit maximization can be written as: $2\eta_t^{ijk} \leq \xi_{P_t^{ijk}/S_t^{ij}}^{\eta^{ijk}}$

In an oligopolistic framework, $\xi_{P^{ijk}/S^{ij}}^{\eta^{ijk}} = 0$ is no more a sufficient condition for complete pass-through. $\beta_{OC}^{ijk} = 0$ requires the price sensitivity of the demand elasticity to equal the elasticity of the exporter's market share to price changes, which is unlikely. On the contrary, β_{OC}^{ijk} should be positive if the demand is elastic enough.³⁶

In such a setting, the optimal pass-through still depends on the perceived elasticity of demand but also on the exporter's market share in the foreign market. The direction of this relation is however ambiguous, as

$$sign\left(\frac{\partial\beta^{ijk}}{\partial\omega^{ijk}}\right) = sign\left(\eta_t^{ijk}(\xi_{P^{ijk}/S^{ij}}^{\eta^{ijk}} - \xi_{P^{ijk}/S^{ij}}^{\omega^{ijk}}) - \omega_t^{ijk}\frac{\partial\xi_{P^{ijk}/S^{ij}}^{\omega^{ijk}}}{\partial\omega^{ijk}}(\eta_t^{ijk} - \omega_t^{ijk})\right)$$

In the general case, the sign of this derivative is positive, i.e. pricing-to-market is more pronounced when the market share of the exporter grows. This relation is due to the fact that the exporter's mark-up increases with her market share, which gives her a wider room for maneuver to absorb exchange-rate shocks. However, if the price-elasticity of the market share is increasing in the market share $\left(\frac{\partial \xi_{pijk}^{wijk}}{\partial \omega^{ijk}} > 0\right)$ and the price-elasticity of demand is low enough, compared to the market share, the sign of this derivative can reverse. One could then possibly observe a negative relation between β_{OC}^{ijk} and ω_t^{ijk} , in a framework of quasimonopoly and low demand elasticity (for instance, in high-grade sectors). In that case, the producer need not adjust her prices to exchange-rate changes, since the demand risk is low. Under weak assumptions on the functional form of demand, Feenstra et al. (1996) show that the pass-through elasticity "*might initially decline as market share rises, but will increase towards unity as market shares approaches 100 percent*" and find some evidence of such a bell shape relation in the automobile industry.

A.2 Source and definition of data

Real exchange rates are computed using nominal exchange rates (e) and consumer price indexes (P) (source: World Bank, World development indicators), and defined as follows:

$$S_t^{ij} = \frac{e_t^{ij} P_t^j}{P_t^i}$$

A rise stands for a depreciation of currency i against j in real terms. Unit values are used as trade prices, and taken from the BACI database. They are computed as the ratio of the traded value on the traded quantity (in tons):

$$IVU_t^{ijk} = \frac{V_t^{ijk}}{Q_t^{ijk}}$$

with:

- V_t^{ijk} the value of the trade flow of product k sold by i to j at time t,
- and Q_t^{ijk} the quantity (in tons) of traded products.

These variables are constructed from COMTRADE data, which are harmonized in order to allow for a reconciliation of import and export declarations. For more details on the content and building of the BACI database: http://www.cepii.fr/anglaisgraph/bdd/baci/baci.pdf.

$${}^{36}\beta^{ijk}_{OC} > 0 \text{ as long as } \eta^{ijk}_t > \omega^{ijk}_t - \xi^{\eta^{ijk}}_{P^{ijk}/S^{ij}} + \xi^{\omega^{ijk}}_{P^{ijk}/S^{ij}}.$$

	Table A.1 . Pricing to market at the hs2 level						
Hs2	Label	Signif.	Weighted	Standard			
	· · · ·	coef.*	Med.PTM	Error			
01	Live animals	7/12	0.56	0.84			
02	Meat and edible meat offal.	29/47	0.34	0.27			
03	Fish and crustacean, mollusc & other aquatic invertebrate	58/84	0.38	0.76			
04	Dairy prod. birds' eggs. natural honey. edible prod nes	17/25	0.14	0.26			
05	Products of animal origin, nes or included.	6/11	0.21	0.73			
06	Live tree & other plant. bulb, root. cut flowers etc	4/12	0.10	0.86			
07	Edible vegetables and certain roots and tubers.	29/55	0.02	0.35			
08	Edible fruit and nuts. peel of citrus fruit or melons.	32/49	0.13	0.31			
09	Coffee, tea, mat- and spices.	17/31	0.06	0.42			
10	Cereals.	12/16	-0.08	0.45			
11	Prod mill indust. malt. starches. inulin. wheat gluten	13/25	0.14	1.35			
12	Oil seed, oleagi fruits. miscell grain, seed, fruit etc	25/38	0.07	0.45			
13	Lac. gums, resins & other vegetable saps & extracts.	5/10	0.34	0.18			
14	Vegetable plaiting materials. vegetable products nes	4/7	-0.11	0.54			
15	Animal/veg fats & oils & their cleavage products. etc	29/50	0.07	0.43			
16	Prep of meat, fish or crustaceans, molluscs etc	17/24	0.13	0.53			
17	Sugars and sugar confectionery.	11/15	-0.05	0.99			
18	Cocoa and cocoa preparations.	7/11	0.24	0.35			
19	Prep of cereal, flour, starch/milk. pastrycooks' prod	12/16	0.24	0.27			
20	Prep of vegetable, fruit, nuts or other parts of plants	30/43	0.20	0.20			
21	Miscellaneous edible preparations.	12/15	0.30	0.39			
22	Beverages, spirits and vinegar.	12/21	0.24	0.60			
23	Residues & waste from the food indust. prepr ani fodder	12/21	0.00	0.78			
24	Tobacco and manufactured tobacco substitutes.	3/8	-0.19	0.49			
28	Inorgn chem. compds of prec met, radioact elements etc	70/158	0.13	0.46			
29	Organic chemicals.	153/274	0.16	0.69			
30	Pharmaceutical products.	15/27	0.43	0.91			
31	Fertilisers.	13/23	0.27	0.46			
32	Tanning/dyeing extract. tannins & derivs. pigm etc	24/45	0.19	0.19			
33	Essential oils & resinoids. perf, cosmetic/toilet prep	13/30	0.20	0.21			
34	Soap, organic surface-active agents, washing prep, etc	14/23	0.17	0.19			
35	Albuminoidal subs. modified starches. glues. enzymes.	6/13	0.15	0.22			
36	Explosives. pyrotechnic prod. matches. pyrop alloy. etc	4/8	0.27	0.39			
37	Photographic or cinematographic goods.	17/31	0.38	0.78			
38	Miscellaneous chemical products.	36/55	0.20	0.31			
39	Plastics and articles thereof.	86/123	0.14	0.40			
40	Rubber and articles thereof.	39/66	0.17	0.66			
41	Raw hides and skins (other than furskins) and leather.	12/29	0.24	0.31			
42	Articles of leather. saddlery/harness. travel goods etc	13/20	0.01	1.04			
43	Furskins and artificial fur. manufactures thereof.	4/11	0.60	0.53			
44	Wood and articles of wood. wood charcoal.	37/62	0.12	0.59			
45	Cork and articles of cork.	3/7	0.41	0.21			
46	Manufactures of straw, esparto/other plaiting mat. etc	4/6	0.29	0.52			
47	Pulp of wood/of other fibrous cellulosic mat. waste etc	11/18	0.17	0.22			
48	Paper & paperboard. art of paper pulp	74/108	0.20	0.50			
49	Printed books, newspapers, pictures and other product	6/19	-0.04	0.43			

Table A.1 . Pricing to market at the	hs2 level

50	Silk.	4/8	0.30	0.19
51	Wool, fine/coarse animal hair, horsehair yarn & fabric	18/32	0.20	0.39
52	Cotton.	54/113	0.10	0.59
53	Other vegetable textile fibres. paper yarn & woven fab	7/20	0.14	0.43
54	Man-made filaments.	37/65	0.14	0.93
55	Man-made staple fibres.	55/110	0.10	0.49
56	Wadding, felt & nonwoven. yarns. twine, cordage, etc	13/27	0.14	0.33
57	Carpets and other textile floor coverings.	11/22	-0.14	0.53
58	Special woven fab. tufted tex fab. lace. tapestries etc	19/36	-0.14	0.54
59	Impregnated, coated, cover/laminated textile fabric etc	19/30	0.05	0.01
60	Knitted or crocheted fabrics.	12/24	-0.00	0.38
61	Art of apparel & clothing access, knitted or crocheted.	52/102	0.25	0.52
62	Art of apparel & clothing access, not knitted/crocheted.	76/113	0.23	0.62
63	Other made up textile articles. sets. worn clothing etc	37/57	0.30	
				0.60
64	Footwear, gaiters and the like. parts of such articles.	13/29	0.22 0.04	0.48
65	Headgear and parts thereof.	2/8		0.35
66	Umbrellas, walking-sticks, seat-sticks, whips, etc	5/6	0.43	0.24
67	Prepr feathers & down. arti flower. articles human hair	2/6	0.06	0.61
68	Art of stone, plaster, cement, asbestos, mica/sim mat	21/46	0.17	0.53
69	Ceramic products.	6/28	0.18	0.56
70	Glass and glassware.	24/56	-0.01	0.45
71	Natural/cultured pearls, prec stones & metals, coin etc	2/2	-0.11	0.50
72	Iron and steel.	102/181	0.12	1.04
73	Articles of iron or steel.	66/117	0.17	0.37
74	Copper and articles thereof.	27/55	0.12	0.60
75	Nickel and articles thereof.	4/14	0.06	0.33
76	Aluminium and articles thereof.	17/34	0.02	0.29
78	Lead and articles thereof.	4/8	-0.10	0.53
79	Zinc and articles thereof.	4/10	0.02	0.32
80	Tin and articles thereof.	1/7	0.01	0.64
81	Other base metals. cermets. articles thereof.	4/23	0.12	0.51
82	Tool, implement, cutlery, spoon & fork, of base met etc	23/65	-0.01	0.35
83	Miscellaneous articles of base metal.	23/36	0.27	0.31
84	Nuclear reactors, boilers, mchy & mech appliance. parts	198/484	0.02	0.54
85	Electrical mchy equip parts thereof. sound recorder etc	148/256	-0.42	0.72
86	Railw/tramw locom, rolling-stock & parts thereof. etc	4/13	0.10	0.84
87	Vehicles o/t railw/tramw roll-stock, pts & accessories	38/76	0.21	0.66
88	Aircraft, spacecraft, and parts thereof.	4/10	0.03	0.97
89	Ships, boats and floating structures.	7/15	-1.40	2.81
90	Optical, photo, cine, meas, checking, precision, etc	54/130	0.07	0.64
92	Musical instruments. parts and access of such articles	8/19	0.08	0.99
93	Arms and ammunition. parts and accessories thereof.	5/11	0.29	1.73
94	Furniture. bedding, mattress, matt support, cushion etc	16/37	0.02	0.35
95	Toys, games & sports requisites. parts & access thereof	25/43	0.24	1.13
96 * N	Miscellaneous manufactured articles.	19/47	0.02	0.44

96 Miscellaneous manufactured articles. * Number of coefficients that are significantly different from zero (at the 5% level) compared with the number of estimated coefficients in the hs2 category. *Source: Authors' calculations.*

Hs6	Label	$\hat{\beta}^k$
030240	Herrings, fresh or chilled, excluding livers and roes	0.95
030269	Fish nes, fresh or chilled excluding livers and roes	1.01
051191	Fish, shellfish & aquatic invert prod nes	1.00
090700	Cloves (whole fruit, cloves and stems)	1.01
190520	Gingerbread and the like	0.99
210130	Chicory & other coffee substitutes roasted & extracts	0.99
282736	Zinc chloride	0.98
282751	Bromides of sodium or of potassium	0.99
283322	Aluminium sulphate	1.05
283510	Phosphinates (hypophosphites) & phosphonates (phosphites) of metals	0.99
290529	Unsaturated monohydric acyclic alcohols nes	0.97
290719	Monophenols nes	0.99
290919	Acyclic ethers nes. derivatives of acyclic ethers	1.00
293390	Heterocyclic components with nitrogen hetero-atom(s) only, nes	1.05
293890	Glycosides & their salts, ethers, esters & other derivatives, nes, in bulk	0.96
300432	Adrenal cortex hormones, in dosage	0.98
310551	Fertilizers containg nitrates & phosphates, nes, in pack weighg =10kg</td <td>1.04</td>	1.04
370251	Film for colour photo sens, unexp, in rolls,w =16mm & le</=14 m, nes</td <td>1.00</td>	1.00
370400	Photo plates, film, paper, paperboard & textiles, exposed but not developed	1.04
370610	Cinematograph film, exposed & developed, of a width of 35 mm or more	0.98
480429	Paper, sack kraft, in rolls, o/t unbl, uncoated	1.00
480820	Paper, sack kraft, creped or crinkled, in rolls or sheets	0.96
520515	Cotton yarn,>/=85%,single,uncombd,<125 dtex,nt put up f retail sale	1.04
520841	Plain weave cotton fabric,>/=85%, not more than 100 g/m2, yarn dyed	1.00
521131	Plain weave cotton fab,<85% mixed with m-m fib,more than 200 g/m2,dyed	1.01
550690	Synthetic staple fibres, carded or combed, nes	1.00
620191	Mens/boys anoraks & similar articles, of wool/fine animal hair, not knittd	1.03
620799	Mens/boys bathrobes, dressg gowns, etc of oth textile materials, not knit	1.03
620990	Babies garments & clothg accessories of oth textile materials, not knittd	1.02
731823	Rivets, iron or steel	1.01
820340	Pipe-cutters, bolt croppers, perforating punches and similar tools	0.95
843352	Threshing machinery nes	1.01
843360	Machines for cleaning, sorting or grading eggs, fruit or other produce	1.03
844329	Letterpress printing machinery nes exc flexographic printing	0.99
900211	Objective lenses f cameras, projectors/photographic enlargers/reducers	0.97
930400	Arms nes, excluding those of heading No 93.07	1.04

Table A.2 . Sample of industries exhibiting nearly unitary PTM coefficients

Source: Authors' calculations.

LIST OF THE WORKING PAPERS RELEASED BY CEPII

N^{ullet}	Titre	Auteurs
2006-02	Exchange-Rate Pass-Trough at the Product Level	G. Gaulier A. Lahrèche-Révil I. Méjean
2006-01	<i>Je t'aime, moi non plus</i> : Bilateral Opinions and International Trade	A.C. Disdier & T. Mayer
2005-23	World Trade Competitiveness: A Disaggregated View by Shift-Share Analysis	A. Cheptea, G. Gaulier & S. Zignago
2005-22	Chômage et réformes du marché du travail au Japon	E. Dourille-Feer
2005-21	Profitability of Foreign and Domestic Banks in Central and Eastern Europe: Does the Mode of Entry Matter?,	O. Havrylchyk & E. Jurzyk
2005-20	ECB Governance in an Enlarged Eurozone,	A. Bénassy-Quéré & E. Turkisch
2005-19	What Are EU Trade Preferences Worth for Sub- Saharan Africa and Other Developing Countries?	F. Candau & S. Jean
2005-18	Binding Overhang and Tariff-Cutting Formulas	M.H. Bchir, S. Jean & D. Laborde
2005-17	International Trade and Income Distribution: Reconsidering the Evidence	I. Bensidoun, S. Jean & A. Sztulman
2005-16	China and the Relationship between the Oil Price and the Dollar	A. Bénassy-Quéré, V. Mignon & A. Penot
2005-15	Consequences of Alternative Formulas for Agricultural Tariff Cuts	S. Jean, D. Laborde & W. Martin
2005-14	Is Erosion of Tariff Preferences a Serious Concern?	A. Bouët, L. Fontagné & S. Jean
2005-13	The Consequences of Agricultural Trade Liberalization for Developing Countries: Distinguishing Between Genuine Benefits and False Hopes	J.C. Bureau, S. Jean A. Matthews
2005-12	From Bound Duties to Actual Protection: Industrial Liberalisation in the Doha Round	M.H. Bchir, L. Fontagné & S. Jean
2005-11	Impact de l'ouverture financière sur les inégalités internes dans les pays émergents	A. Bénassy-Quéré & V. Salins
2005-10	Disentangling Horizontal and Vertical Intra-Industry Trade	L. Fontagné, M. Freudenberg & G. Gaulier
2005-09	China's Integration in East Asia: Production Sharing, FDI & High-Tech Trade	G. Gaulier, F. Lemoine D. Ünal-Kesenci

2005-08	Tax Competition and Public Input	A. Bénassy-Quéré, N. Gobalraja & A. Trannoy
2005-07	Trade Liberalisation, Growth and Poverty in Senegal: A Dynamic Microsimulation CGE Model Analysis	N. Annabi, F. Cissé, J. Cockburn & B. Decaluwé
2005-06	Migration, Trade and Wages	A. Hijzen & P. Wright
2005-05	Institutional Determinants of Foreign Investment	A. Bénassy-Quéré, M. Coupet & T. Mayer
2005-04	L'économie indienne : changements structurels et perspectives à long terme	S. Chauvin & F. Lemoine
2005-03	Programme de travail du CEPII pour 2005	
2005-02	Market Access in Global and Regional Trade	T. Mayer & S. Zignago
2005-01	Real Equilibrium Exchange Rate in China	V. Coudert & C. Couharde
2004-22	A Consistent, <i>ad-valorem</i> Equivalent Measure of Applied Protection Across the World: The MAcMap- HS6 Database	A. Bouët, Y. Decreux, L. Fontagné, S. Jean & D. Laborde
2004-21	IMF in Theory: Sovereign Debts, Judicialisation and Multilateralism	J. Sgard
2004-20	The Impact of Multilateral Liberalisation on European Regions: a CGE Assessment	S. Jean & D. Laborde
2004-19	La compétitivité de l'agriculture et des industries agroalimentaires dans le Mercosur et l'Union européenne dans une perspective de libéralisation commerciale	N. Mulder, A. Vialou, B. David, M. Rodriguez & M. Castilho
2004-18	Multilateral Agricultural Trade Liberalization: The Contrasting Fortunes of Developinc Countries in the Doha Round	A. Bouët, J.C. Bureau, Y. Decreux & S. Jean
2004-17	UK in or UK out? A Common Cycle Analysis between the UK and the Euro Zone	J. Garnier
2004-16	Regionalism and the Regionalisation of International Trade	G. Gaulier, S. Jean & D. Ünal-Kesenci
2004-15	The Stock-Flow Approach to the Real Exchange Rate of CEE Transition Economies	B. Egert, A. Lahrècche-Révil & K. Lommatzsch
2004-14	Vieillissement démographique, épargne et retraite : une analyse à l'aide d'un modèle d'équilibre général à agents hétérogènes	C. Bac & J. Chateau

2004-13	Burden Sharing and Exchange-Rate Misalignments within the Group of Twenty	A. Bénassy-Quéré, P. Duran-Vigneron, A. Lahrèche-Révil & V. Mignon
2004-12	Regulation and Wage Premia	S. Jean & G. Nicoletti
2004-11	The Efficiency of Fiscal Policies: a Survey of the Literature	S. Capet
2004-10	La réforme du marché du travail en Allemagne : les enseignements d'une maquette	S. Capet
2004-09	Typologie et équivalence des systèmes de retraites	P. Villa
2004-08	South – South Trade: Geography Matters	S. Coulibaly & L. Fontagné
2004-07	Current Accounts Dynamics in New EU Members: Sustainability and Policy Issues	P. Zanghieri
2004-06	Incertitude radicale et choix du modèle	P. Villa
2004-05	Does Exchange Rate Regime Explain Differences in Economic Results for Asian Countries?	V. Coudert & M. Dubert
2004-04	Trade in the Triad: How Easy is the Access to Large Markets?	L. Fontagné, T. Mayer & S. Zignago
2004-03	Programme de travail du CEPII pour 2004	
2004-02	Technology Differences, Institutions and Economic Growth: a Conditional Conditional Convergence	H. Boulhol
2004-01	Croissance et régimes d'investissement	P. Villa
2003-22	A New Look at the Feldstein-Horioka Puzzle using a Integrated Panel	A. Banerjee P. Zanghieri
2003-21	Trade Linkages and Exchange Rates in Asia : The Role of China	A. Bénassy-Quéré & A. Lahrèche-Révil
2003-20	Economic Implications of Trade Liberalization Under the Doha Round	J. Francois, H. van Meijl & F. van Tongeren
2003-19	Methodological Tools for SIA - Report of the CEPII Worshop held on 7-8 November 2002 in Brussels	
2003-18	Order Flows, Delta Hedging and Exchange Rate Dynamics	B. Rzepkowski
2003-17	Tax Competition and Foreign Direct Investment	A. Bénassy-Quéré, L. Fontagné & A. Lahrèche-Révil
2003-16	Commerce et transfert de technologies : les cas comparés de la Turquie, de l'Inde et de la Chine	F. Lemoine & D. Ünal-Kesenci

2003-15	The Empirics of Agglomeration and Trade	K. Head & T. Mayer
2003-14	Notional Defined Contribution: A Comparison of the French and German Point Systems	F. Legros
2003-13	How Different is Eastern Europe? Structure and Determinants of Location Choices by French Firms in Eastern and Western Europe	A.C. Disdier & T. Mayer
2003-12	Market Access Liberalisation in the Doha Round: Scenarios and Assessment	L. Fontagné, J.L. Guérin & S. Jean
2003-11	On the Adequacy of Monetary Arrangements in Sub-Saharian Africa	A. Bénassy-Quéré & M. Coupet
2003-10	The Impact of EU Enlargement on Member States: a CGE Approach	H. Bchir, L. Fontagné & P. Zanghieri
2003-09	India in the World Economy: Traditional Specialisations and Technology Niches	S. Chauvin & F. Lemoine
2003-08	Imitation Amongst Exchange-Rate Forecasters: Evidence from Survey Data	M. Beine, A. Bénassy-Quéré & H. Colas
2003-07	Le Currency Board à travers l'expérience de l'Argentine	S. Chauvin & P. Villa
2003-06	Trade and Convergence: Revisiting Ben-Davil	G. Gaulier
2003-05	Estimating the Fundamental Equilibrium Exchange Rate of Central and Eastern European Countries the EMU Enlargement Perspective	B. Egert & A. Lahrèche-Révil
2003-04	Skills, Technology and Growth is ICT the Key to Success?	J. Melka, L. Nayman, S. Zignago & N. Mulder
2003-03	L'investissement en TIC aux Etats-Unis et dans quelques pays européens	G. Cette & P.A. Noual
2003-02	Can Business and Social Networks Explain the Border Effect Puzzle?	P.P. Combes, M. Lafourcade & T. Mayer

CEPII DOCUMENTS DE TRAVAIL / WORKING PAPERS

Si vous souhaitez recevoir des Documents de travail, merci de remplir le coupon-réponse ci-joint et de le retourner à :

Should you wish to receive copies of the CEPII's Working papers, just fill the reply card and return it to:

Sylvie HURION – Publications CEPII – 9, rue Georges-Pitard – 75740 Paris – Fax : (33) 1.53.68.55.04 sylvie.hurion@cepii.fr

M./Mme / Mr./Mrs			
Nom-Prénom / Name-First name			
Titre / Title			
Service / Department			
Organisme / Organisation			
Adresse / Address			
Ville & CP / City & post code Pays / Country			
Désire recevoir les Document de travail du CEPII n° :			
Wish to receive the CEPII's Working Papers No:			
Souhaite être placé sur la liste de diffusion permanente (pour les bibliothèques) <i>Wish to be placed on the standing mailing list (for Libraries</i>).			